Redundant OpenVPN servers with Yubikey OTP
and PIN

v02
Goal: Create a VPN server that authenticates users with:

- SSL certificates stored on the client computer
- physical OTP key that the user carries
- PIN that the user knows

SSL authentication is performed by OpenVPN, the VPN software used for the server and the
client.

OTP authentication is handled by Yubico software and hardware. The OTP tokens are USB
sticks called Yubikey, that register with the computer as a "keyboard". They generate an OTP
every time the sensor is touched by the user.

The PIN is stored in a local database. In this particular case, Radius is used to do the PIN
authentication.

When the connection is initiated, in the password field the user enters the PIN first. Without
pressing Enter, the user then taps the Yubikey, which generates the OTP directly into the
password field.

Duplicate the VPN server, establish master/master replication between MySQL on the two
servers. Do DNS “load balancing” between the two servers.

Architecture

The internal connections inside a VPN server:

¥ ubikey
WAL

/fh;u?\/t‘;/r—\
N]

Key ' Y;gr:y PAM - - OpanyPH

e N S N

Radius

e

PAM is the authentication broker, with the main configuration file /etc/pam.d/openvpn
Key identities and Radius PINs are stored in MySQL.
/etclyubico/yubikeyid binds user accounts to key identities.

Making changes to accounts (create, delete, lock, modify) involved making changes to the
MySQL database and/or /etc/yubico/yubikeyid

The two VPN servers have their MySQL databases in a master/master replication scheme, via a
private VPN tunnel.

Install OpenVPN, configure, test

OpenVPN is a VPN server that uses OpenSSL for encryption. It is not an “SSL VPN”, but a
full-fledged VPN software, with complete routing capabilities, point-to-point, LAN-to-LAN, etc.
Authentication is typically done with SSL certificates on client and server, but other mechanisms
could be used (fixed password, OTP, smart cards / PKCS#11, etc).

Install Ubuntu 14.04 LTS, pretty minimal configuration (ssh is the only service really required for
now). Update and reboot.

apt-get update
apt-get dist-upgrade

reboot

apt-get install openvpn easy-rsa
useradd -d /var/run/openvpn -m -r -s /usr/sbin/nologin openvpn

http://openvpn.net/index.php/open-source/documentation/howto.html

Create your own CA (Certificate Authority)

Once you have your own CA, with a master CA certificate and key, you could generate as many
certificates as you wish for servers and clients. This is accomplished with the easy-rsa set of
scripts, which uses openssl.

It is important that the location for the CA is secure and unique. Choose a good place for it, and
stick to it. All certificates you generate and revoke are indexed and kept track of within the CA, so
don’t start multiple copies of your CA. It cannot be much of an 'authority’ if there’s many of them
floating around.

Create a directory where you will keep the SSL CA files. Copy all easy-rsa scripts there.

cd <secure location>

cp -a /usr/share/easy-rsa .
cd easy-rsa

Open the vars file in a text editor and edit the block containing KEY_COUNTRY.
Generate the master CA certificate and key:

. vars

http://www.google.com/url?q=http%3A%2F%2Fopenvpn.net%2Findex.php%2Fopen-source%2Fdocumentation%2Fhowto.html&sa=D&sntz=1&usg=AFQjCNFewxgn_Nx9u6f80qjdbG8Woyl31Q

./clean-all

./build-ca

accept all the defaults here

This is what you will have now in the keys subfolder:

- ca.crt

- ca.key

- index.txt

- serial

Generate certificate and key for servers. The common name you choose here (the parameter for
the build-key-server script) may reflect the name of the VPN server, or some other name

relevant to your context:

./build-key-server vpn-yubikey
accept defaults, leave passwords empty, sign, and commit

Generate Diffie-Hellman parameters:
./build-dh
This is what you have now in keys/:

1s -1h keys/

total 52K

-rw-r--r—-- 1 root root 5.6K Sep 3 16:09 0l.pem
-rw-r--r-- 1 root root 1.8K Sep 3 16:09 ca.crt
—rTW——————~ 1 root root 1.7K Sep 3 16:09 ca.key
-rw-r--r-—- 1 root root 424 Sep 3 16:11 dh2048.pem
-rw-r--r—-—- 1 root root 140 Sep 3 16:09 index.txt
-rw-r--r-- 1 root root 21 Sep 3 16:09 index.txt.attr
-rw-r--r—-- 1 root root 0 Sep 3 16:09 index.txt.old
-rw-r--r-- 1 root root 3 Sep 3 16:09 serial
-rw-r--r—-- 1 root root 3 Sep 3 16:09 serial.old
-rw-r--r-- 1 root root 5.6K Sep 3 16:09 vpn-yubikey.crt
-rw-r--r—-- 1 root root 1.1K Sep 3 16:09 vpn-yubikey.csr
—rW-——————— 1 root root 1.7K Sep 3 16:09 vpn-yubikey.key

Generate certificate and key for a test client. The name used with this command is the common
name of the SSL certificate; it should match the username for the account you’re setting up:

./build-key jsmith

Make a bogus cert and revoke it, just to see how it works:

./build-key bogus-cert-please-ignore
./revoke-full bogus-cert-please-ignore
ignore error 23 at 0 depth lookup:certificate revoked

This will create revoke-test.pem in keys/. In case you need to revoke SSL certificates, you will
copy that file into /etc/openvpn and declare it in the OpenVPN configuration (see man openvpn).
You will have to copy it again every time you revoke another cert.

Create a real certificate for a test user account. The common name for this cert will be the
username for the account that will be created, and it will be used everywhere in this document.

./build-key jsmith

Configure the OpenVPN server

At this point the partial goal is to have a VPN server and a VPN client configured and ready to go,
and authenticate them to each other via SSL certificates only. This is pretty typical for simple
OpenVPN deployments.

Copy server-related files into the OpenVPN config directory:

cd keys
cp ca.crt dh2048.pem vpn-yubikey.crt vpn-yubikey.key /etc/openvpn/

Generate the TLS auth key:

cd /etc/openvpn
openvpn —--genkey --secret ta.key

Create a server config file. It can have any name you wish, as long as it ends in .conf. Suggested
content:

FHEH A H A H AR H S H AR

port 1194

proto udp

float

persist-key

#plugin /usr/lib/openvpn/openvpn-plugin-auth-pam.so openvpn
dev tunl

ca ca.crt

cert vpn-yubikey.crt # edit to match

key vpn-yubikey.key # edit to match

dh dh2048.pem

server 10.114.208.0 255.255.255.0 # edit to match

ifconfig-pool-persist ipp.txt
client-to-client
keepalive 10 120

tls-auth ta.key O
comp-1lzo

user openvpn

group openvpn

persist-key

persist-tun

status openvpn-status.log
verb 3

FHAF ARSI A

This is the content of /etc/openvpn now:

1s -1h

-rw-r--r-- 1 root root 1.8K Sep
-rw-r--r—-- 1 root root 424 Sep
—rW-——————— 1 root root 636 Sep
-rwxr-xr-x 1 root root 1.3K Feb
-rw-r--r-- 1 root root 451 Sep
-rw-r--r—-- 1 root root 5.6K Sep
—rW-——————— 1 root root 1.7K Sep

w W Wb w w w

16:25
16:25
16:35

2014
16:41
16:25
16:25

The permissions on the .key files are more restrictive.

ca.crt

dh2048.pem

ta.key
update-resolv-conft
vpn-yubikey.conf
vpn-yubikey.crt
vpn-yubikey. key

Restart the openvpn service, check /var/log/syslog for any surprises.

An OpenVPN server, by definition, forwards traffic between clients and connection end-points.
By default, IP forwarding is disabled on most distributions, including Ubuntu:

sysctl net.ipv4.ip forward
net.ipvéd.ip forward = 0

To enabile it, create /etc/sysctl.d/99-openvpn.conf with the contents:

net.ipvé4.ip forward=l1l

Start procps and check the variable again:

service procps start
procps stop/waiting

sysctl net.ipv4.ip forward
net.ipvéd.ip forward = 1

You should also verify that the iptables FORWARD chain does not block traffic - but this will be
discussed later in the chapter concerning security. For now, just make sure the FORWARD
chain is empty and has the ACCEPT policy (which is essentially always the case on a fresh
install):

iptables -L FORWARD -nv

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source
destination

#

If the FORWARD chain doesn’t look like that, flush it and reset the policy:

iptables -t filter -F FORWARD
iptables -t filter -P FORWARD ACCEPT

This has security implications, so make sure you understand what you’re doing.

Finally, iptables configurations can be made persistent, so your changes might be overwritten
after reboot. See this document for some suggestions:

https://help.ubuntu.com/community/lptablesHowTo

Again, the discussion on security at the end is relevant for this topic.

Configure the OpenVPN client and test it

Now make a .zip bundle with all files needed for the VPN client. First create an empty folder:

cd
mkdir jsmith
cd jsmith

https://www.google.com/url?q=https%3A%2F%2Fhelp.ubuntu.com%2Fcommunity%2FIptablesHowTo&sa=D&sntz=1&usg=AFQjCNGy2Q8BFg1zPVxWaHnLYCf37QO84g

Create an OpenVPN config file for the client. The extension .ovpn is preferred by some clients.
The name can be anything, but ideally it should match the name of account being created. This
is the content:

FHEFHAHH AR AR H AR H SRR H A
client

dev tun

persist-tun

fauth-user-pass

#auth-retry interact

proto udp

remote vpn-yubikey.yourdomain.com 1194 #edit to match server
resolv-retry infinite

nobind

persist-key

persist-tun

ca ca.crt

cert jsmith.crt #edit to match account
key jsmith.key #edit to match account
ns—-cert-type server

tls—-auth ta.key 1

comp-1lzo

verb 3

FHEHFHAH AR EH AR AH AR H AR H RS EHHHH

Copy the cert and key for client and the CA cert from the secure location, and the TLS auth key
from the server config dir, to the current dir:

cp <secure-location>/keys/jsmith.crt
cp <secure-location>/keys/jsmith.key
cp <secure-location>/keys/ca.crt

cp /etc/openvpn/ta.key

These are all files needed for the client:

1s -1
total 24

-rw-r--r-- 1 root root 1749 Sep 3 17:03 ca.crt

-rw-r--r—-- 1 root root 5493 Sep 3 17:01 jsmith.crt

—rW-——————— 1 root root 1704 Sep 3 17:01 jsmith.key

-rw-r--r—-- 1 root root 301 Sep 3 17:00 jsmith.ovpn
3

—rW-——————— 1 root root 636 Sep 17:03 ta.key

Make the archive for the new client:

cd ..
zip -r jsmith.zip jsmith/

Installing the client files depends on the client you're using. E.g., for the Tunnelblick OpenVPN
client for OS X:

- unzip archive

- in Finder, double-click the .ovpn file and import configuration
- Install Configuration For All Users? - "Only Me"

- click Tunnelblick icon in the task bar, click VPN Details

- select the new configuration you've created

- Connect: "Manually"

- option “Set DNS/WINS” change to “Do not set nameserver”
- select “Keep connected”

Now connect to the server, while watching /var/log/syslog on the server.
If successful, from the client ping the IP address of the server’s tun1 interface - it should only be
reachable when the tunnel is connected.

Install the Yubico software

To use OTP authentication with the Yubikey devices, you have to install the library (and optionally
servers) that can handle OTP.

Yubico has an Ubuntu repository with binaries that contains everything you need:
add-apt-repository ppa:yubico/stable
apt-get update

apt-get install yubikey-ksm yubikey-val libpam-yubico

The yubikey-ksm and yubikey-val packages are the local authentication servers. You only need
them if you want to create your own local OTP authentication backend.

If you just want to use the Yubico public authentication cloud with your key, then ignore these two
packages and install only the PAM library module. In that case, the MySQL server dependency
will be installed later (when FreeRadius is installed).

While installing the yubikey packages, you'll be prompted to perform a few tasks:

- create a root password for MySQL and write it down

- configure database for yubikey-ksm; choose type mysql; leave password blank (will be -
created automatically

- same for yubikey-val

Stop and disable the ykval-queue service (it's not needed, and it's very verbose in the logs):

service ykval-queue stop
update-rc.d ykval-queue disable

http://blog.bogosity.se/2014/04/13/requering-both-an-ssh-key-and-a-yubikey/

http://www.raczylo.com/blog/OpenVPN-with-YubiKey-and-GoogleAuthenticator.html

http://pragmasec.wordpress.com/2014/07/12/set-up-yubikey-with-pam-for-openvpn-ssh-and-squ
irrelmail/

http://www.google.com/url?q=http%3A%2F%2Fblog.bogosity.se%2F2014%2F04%2F13%2Frequering-both-an-ssh-key-and-a-yubikey%2F&sa=D&sntz=1&usg=AFQjCNHI8ExFbsWPb_G5XpTNhT5DgOKIng
http://www.google.com/url?q=http%3A%2F%2Fblog.bogosity.se%2F2014%2F04%2F13%2Frequering-both-an-ssh-key-and-a-yubikey%2F&sa=D&sntz=1&usg=AFQjCNHI8ExFbsWPb_G5XpTNhT5DgOKIng
http://www.google.com/url?q=http%3A%2F%2Fwww.raczylo.com%2Fblog%2FOpenVPN-with-YubiKey-and-GoogleAuthenticator.html&sa=D&sntz=1&usg=AFQjCNFFuMROhmhbQod_xMXfnFXvl075Yw
http://www.google.com/url?q=http%3A%2F%2Fwww.raczylo.com%2Fblog%2FOpenVPN-with-YubiKey-and-GoogleAuthenticator.html&sa=D&sntz=1&usg=AFQjCNFFuMROhmhbQod_xMXfnFXvl075Yw
http://www.google.com/url?q=http%3A%2F%2Fpragmasec.wordpress.com%2F2014%2F07%2F12%2Fset-up-yubikey-with-pam-for-openvpn-ssh-and-squirrelmail%2F&sa=D&sntz=1&usg=AFQjCNFeK5WmJj8VngbpcohR3gB0xTkt9w
http://www.google.com/url?q=http%3A%2F%2Fpragmasec.wordpress.com%2F2014%2F07%2F12%2Fset-up-yubikey-with-pam-for-openvpn-ssh-and-squirrelmail%2F&sa=D&sntz=1&usg=AFQjCNFeK5WmJj8VngbpcohR3gB0xTkt9w

Test OpenVPN authentication with the public Yubico cloud

The OpenVPN infrastructure is authenticating already with SSL client/server certificates. It is
time now to add OTP authentication on top of that. OpenVPN can use PAM as an authentication
broker for a very wide variety of authentication backends (Unix passwords, etc). It is now a
simple matter of adding Yubico as a backend to PAM on the OpenVPN server.

Edit the OpenVPN server config file /etc/openvpn/vpn-yubikey.conf and uncomment the line
below, then restart the openvpn service:

plugin /usr/lib/openvpn/openvpn-plugin-auth-pam.so openvpn

The “openvpn” parameter at the end tells OpenVPN to use for its own authentication the PAM
statements that we will put into /etc/pam.d/openvpn below.

Create /etc/pam.d/openvpn with the contents:

auth required pam_yubico.so authfile=/etc/yubico/yubikeyid id=16
debug
account required pam permit.so debug

The first line tells PAM to use the pam_yubico.so module with its default authentication backend
(the public Yubico auth cloud) using client ID 16, and map user identities to key identities using
the dictionary in /etc/yubico/yubikeyid.

The second line tells PAM to not verify whether it should check that the Unix account for the
authenticated used is actually created (we store all used info in the database).

Insert the Yubikey into a USB port and launch a text editor. If it's a Neo key, do a short press (tap)
on the Yubikey sensor; for older keys do a normal press (it doesn't matter). The OTP will be
printed in the text editor, prefixed by 12 characters which are the ID of this Yubikey (or the ID of
slot 1, if it's a multi-slot like the Neo).

Copy the 12-character ID from the head of the printed string. Create the file /etc/yubico/yubikeyid
and add the test username and the key ID to it in the following format:

username:key-id
E.g.

jsmith:ccccccbhklijr

The username here is the common name used when the client VPN certificate was created
(basically, the name of this user account which will be used everywhere in this HOWTO as an
example).

In the OpenVPN client configuration file jsmith.ovpn remove comments from these lines:

auth-user-pass
auth-retry interact

For the Tunnelblick VPN client, the config files are located in /Library/Application\
Support/Tunnelblick/Shared (if shared) or ~/Library/Application\
Support/Tunnelblick/Configurations (if private).

https://code.gooqgle.com/p/tunnelblick/wiki/cFileLocations#Configuration Files

Now try to connect to the VPN server. You will be prompted for username and password. For the
password field, click it and then short-press the Yubikey sensor - the OTP will fill that field
automatically.

If all goes well, you'll connect to the server. From the client, ping the tun interface of the server to
prove that the tunnel is up.

https://code.google.com/p/tunnelblick/wiki/cFileLocations#Configuration_Files
https://code.google.com/p/tunnelblick/wiki/cFileLocations#Configuration_Files

Install and configure Freeradius

Radius will be used to verify the fixed password for the user account, which will be used in
addition to the OTP, the way a PIN is used with a debit card. The reason why Radius was
chosen here is simplicity: it's an easy way to store the PIN in a database, and then query it. Also,
authenticating PAM against Radius is widely used and pretty robust.

Install FreeRadius:

apt-get install freeradius freeradius-mysgl apg libpam-radius-auth

http://techtots.blogspot.com/2010/01/installing-and-configuring-freeradius.html

http://wiki.freeradius.org/quide/SQL-HOWTO

https://extremeshok.com/2197/ubuntu-12-04-12-10-install-freeradius-server-authenticating-with-
a-mysql-mariadb-database/

Run apg to generate a random password for the radius user (will be used by freeradius to
connect to the DB). Create radius DB and user:

CREATE DATABASE radius;
GRANT ALL ON radius.* TO radius@localhost IDENTIFIED BY "PASSWORD";

Edit /etc/freeradius/sqgl.conf and add to it the password you've generated.

Now create the DB schema:

mysql -uroot -p radius < /etc/freeradius/sql/mysqgl/schema.sqgl

To enable the radius SQL backend, edit /etc/freeradius/radiusd.conf and uncomment this line:
S$INCLUDE sqgl.conf

In the log{} section, make these changes:

destination = syslog
auth = yes

Edit /etc/freeradius/sites-available/default and uncomment sql in the authorize{} section.

http://www.google.com/url?q=http%3A%2F%2Ftechtots.blogspot.com%2F2010%2F01%2Finstalling-and-configuring-freeradius.html&sa=D&sntz=1&usg=AFQjCNHSfOvWVt3FIiuTSRsylDBlOq0vzA
http://www.google.com/url?q=http%3A%2F%2Ftechtots.blogspot.com%2F2010%2F01%2Finstalling-and-configuring-freeradius.html&sa=D&sntz=1&usg=AFQjCNHSfOvWVt3FIiuTSRsylDBlOq0vzA
http://www.google.com/url?q=http%3A%2F%2Fwiki.freeradius.org%2Fguide%2FSQL-HOWTO&sa=D&sntz=1&usg=AFQjCNGPJOojzHurO2SCOP8lVyWdIr2Gsw
http://www.google.com/url?q=http%3A%2F%2Fwiki.freeradius.org%2Fguide%2FSQL-HOWTO&sa=D&sntz=1&usg=AFQjCNGPJOojzHurO2SCOP8lVyWdIr2Gsw
https://www.google.com/url?q=https%3A%2F%2Fextremeshok.com%2F2197%2Fubuntu-12-04-12-10-install-freeradius-server-authenticating-with-a-mysql-mariadb-database%2F&sa=D&sntz=1&usg=AFQjCNFEG27ovLR2zJjsGxf_YSIsxxY6jg
https://www.google.com/url?q=https%3A%2F%2Fextremeshok.com%2F2197%2Fubuntu-12-04-12-10-install-freeradius-server-authenticating-with-a-mysql-mariadb-database%2F&sa=D&sntz=1&usg=AFQjCNFEG27ovLR2zJjsGxf_YSIsxxY6jg
https://www.google.com/url?q=https%3A%2F%2Fextremeshok.com%2F2197%2Fubuntu-12-04-12-10-install-freeradius-server-authenticating-with-a-mysql-mariadb-database%2F&sa=D&sntz=1&usg=AFQjCNFEG27ovLR2zJjsGxf_YSIsxxY6jg

Edit /etc/freeradius/clients.conf and change the radius secret to a more secure value (use the
apg utility to generate random strings).

Now it's time to add your VPN test account to the Radius database, along with its PIN. In the
example below I've chosen the PIN "1234":

INSERT INTO radius.radcheck (username, attribute, op, value) VALUES
("jsmith', 'MD5-Password', ':=', MD5('1234"'"));

Restart the Radius server:
service freeradius restart

Sometimes this service gets stuck when you restart it the first time after it's installed - check
Ivar/log/syslog. If so, then do a "service freeradius stop", kill the remaining freeradius process
manually, then start the service again. After that you should have no problems restarting it.

Test it with the command-line tool:

radtest jsmith 1234 localhost:1812 1 <radius-secret>
Sending Access-Request of id 225 to 127.0.0.1 port 1812
User-Name = "jsmith"
User-Password = "1234"
NAS-IP-Address = 127.0.1.1
NAS-Port =1
Message-Authenticator = 0x00000000000000000000000000000000
rad recv: Access-Accept packet from host 127.0.0.1 port 1812, id=225,
length=20

If you get Access-Accept then it’s fine. Check /var/log/syslog for troubleshooting.
Note: Currently, during the boot-up sequence, the Ubuntu freeradius package starts the service
too soon, before mysql is running. Because of that, freeradius fails to connect to the DB. As a

workaround, | restart free freeradius later during boot, by adding this line to /etc/rc.local:

(sleep 20; service freeradius stop; sleep 1; service freeradius
start) &

Test authentication with OTP (public Yubico auth cloud) + local
Radius PIN

Time to add the Radius PIN to the existing authentication mechanisms on the VPN server. This
is accomplished by stacking up various PAM modules - specifically, by inserting the Radius PAM
module in the existing stack in /etc/pam.d/openvpn.

To configure the Radius PAM module, edit /etc/pam_radius_auth.conf and add a line containing
localhost, with the secret you've entered in /etc/freeradius/clients.cfg. This will tell PAM to use
localhost as a Radius authentication server.

127.0.0.1 vyour-secret 3

The comments in that file tell you to copy it somewhere else - don’t do that if you do the standard
Ubuntu installation from repos.

Now edit /etc/pam.d/openvpn and insert a line to enable Radius authentication. The file should
now look like this:

auth required pam yubico.so authfile=/etc/yubico/yubikeyid id=16
debug

auth required pam radius auth.so debug

account required pam permit.so debug

The order is important. The Yubico module must process the PIN + OTP string first, since it
knows how to remove the OTP from it before handing it down to the next module.

After that, the Radius module verifies the PIN against the database.

The line with pam_permit.so at the end is there to allow you to create accounts only in the
database, with no need to also create Unix accounts on the OS. If you omit that line,
authentication will still go to the OTP servers and to Radius, but it will ultimately fail anyway
because the PAM stack also checks the existence of the Unix account, if you don'’t force a
successful return from the account existence check.

https://www.wikidsystems.com/support/wikid-support-center/how-to/how-to-configure-pam-radiu
s-in-ubuntu

https://www.digitalocean.com/community/tutorials/how-to-use-pam-to-configure-authentication-o
n-an-ubuntu-12-04-vps

https://www.google.com/url?q=https%3A%2F%2Fwww.wikidsystems.com%2Fsupport%2Fwikid-support-center%2Fhow-to%2Fhow-to-configure-pam-radius-in-ubuntu&sa=D&sntz=1&usg=AFQjCNEygeNQ42uFvOYVZStP--pRlWERkg
https://www.google.com/url?q=https%3A%2F%2Fwww.wikidsystems.com%2Fsupport%2Fwikid-support-center%2Fhow-to%2Fhow-to-configure-pam-radius-in-ubuntu&sa=D&sntz=1&usg=AFQjCNEygeNQ42uFvOYVZStP--pRlWERkg
https://www.google.com/url?q=https%3A%2F%2Fwww.wikidsystems.com%2Fsupport%2Fwikid-support-center%2Fhow-to%2Fhow-to-configure-pam-radius-in-ubuntu&sa=D&sntz=1&usg=AFQjCNEygeNQ42uFvOYVZStP--pRlWERkg
https://www.google.com/url?q=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fhow-to-use-pam-to-configure-authentication-on-an-ubuntu-12-04-vps&sa=D&sntz=1&usg=AFQjCNFl3_zLk16qBleCVX3VYlXjzJjNFg
https://www.google.com/url?q=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fhow-to-use-pam-to-configure-authentication-on-an-ubuntu-12-04-vps&sa=D&sntz=1&usg=AFQjCNFl3_zLk16qBleCVX3VYlXjzJjNFg
https://www.google.com/url?q=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fhow-to-use-pam-to-configure-authentication-on-an-ubuntu-12-04-vps&sa=D&sntz=1&usg=AFQjCNFl3_zLk16qBleCVX3VYlXjzJjNFg

Also see all the documentation files in /usr/share/doc/libpam-yubico, installed with the
libpam-yubico package.

On the VPN server, begin watching /var/log/syslog with tail -f. No need to restart anything.

Plug the Yubikey in your VPN client computer and connect the test VPN tunnel. At the prompt,
enter your test username. Move the cursor to the password field and enter the Radius PIN. Do
not press Enter after that. Just leave it as is, and touch the sensor on the Yubikey - it will print
the OTP into the password field and it will “hit Enter” automatically at the end.

The idea is that the “password” you send to the VPN server is the Radius PIN concatenated with
the Yubico OTP. PAM will extract the various parts and treat them separately.

If all goes well, the tunnel will be established. In the logs, you'll see something similar to this:

Sep 5 10:53:06 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 TLS: Initial packet from

[AF INET]172.28.128.1:58543, sid=3a%0df63 09e379%94

Sep 5 10:53:06 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 VERIFY OK: depth=1, C=US, ST=CA, L=MyHomeTown,
O=thiscompany, OU=Engineering, CN=thiscompany CA, name=EasyRSA,
emailAddress=eng@thiscompany.com

Sep 5 10:53:06 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 VERIFY OK: depth=0, C=US, ST=CA, L=MyHomeTown,
O=thiscompany, OU=Engineering, CN=jsmith, name=EasyRSA,
emailAddress=eng@thiscompany.com

Sep 5 10:53:11 vbox-ubuntu-1404 openvpn[1027]: pam radius_ auth:
DEBUG: getservbyname (radius, udp) returned 1048382528.

Sep 5 10:53:11 vbox-ubuntu-1404 freeradius[1808]: Login OK: [Jsmith]
(from client localhost port 1027)

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 PLUGIN CALL: POST
/usr/lib/openvpn/openvpn-plugin-auth-pam.so/PLUGIN AUTH USER_PASS VER
IFY status=0

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 TLS: Username/Password authentication succeeded
for username 'jsmith'

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 Data Channel Encrypt: Cipher 'BF-CBC' initialized
with 128 bit key

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 Data Channel Encrypt: Using 160 bit message hash
'SHA1l' for HMAC authentication

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 Data Channel Decrypt: Cipher 'BF-CBC' initialized
with 128 bit key

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 Data Channel Decrypt: Using 160 bit message hash
'SHA1' for HMAC authentication

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 Control Channel: TLSvl, cipher TLSv1/SSLv3
DHE-RSA-AES256-SHA, 2048 bit RSA

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
172.28.128.1:58543 [Jjsmith] Peer Connection Initiated with

[AF INET]172.28.128.1:58543

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
Jjsmith/172.28.128.1:58543 MULTI sva: pool returned IPv4=10.114.208.6,
IPv6o=(Not enabled)

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
jsmith/172.28.128.1:58543 MULTI: Learn: 10.114.208.6 ->
jsmith/172.28.128.1:58543

Sep 5 10:53:11 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
jsmith/172.28.128.1:58543 MULTI: primary virtual IP for
jsmith/172.28.128.1:58543: 10.114.208.6

Sep 5 10:53:14 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
jsmith/172.28.128.1:58543 PUSH: Received control message:

'PUSH REQUEST'

Sep 5 10:53:14 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
Jsmith/172.28.128.1:58543 send push reply(): safe cap=940

Sep 5 10:53:14 vbox-ubuntu-1404 ovpn-vpn-yubikey[1034]:
Jsmith/172.28.128.1:58543 SENT CONTROL [jsmith]: 'PUSH_REPLY, route
10.114.208.0 255.255.255.0, topology net30,ping 10,ping-restart
120,ifconfig 10.114.208.6 10.114.208.5" (status=1)

At this point you have a fully functional VPN server, authenticating with:
- SSL certificates in the VPN user profile, stored on your laptop / desktop in the VPN client
- Radius PIN, stored in the user’s brain

- OTP generated by the Yubikey

You’re authenticating against the public Yubico auth cloud, and there is no redundancy for the
VPN server. If this is what you need, you could stop now.

The following chapters describe how to implement your own Yubico authentication servers
locally, and how to build a pair of redundant VPN servers.

Generate a key identity and store it in your local Yubico auth
servers

To use your own local authentication servers, instead of the public Yubico cloud, you need to
store the whole identity of your Yubikey in your servers. Since it's impossible to extract the
private ID string and secret key from an existing Yubikey device, you have to generate an ID in
software, and commit it to your Yubikey.

If you have a Yubikey Neo, this key has two slots, each slot with a separate identity. Slot 1 is
activated by a short press (tap) on the sensor, slot 2 is activated by a long press (about 3
seconds). | believe slot 2 is empty by default. You could keep the factory default identity on slot 1
unchanged, and overwrite only slot 2. Then you could authenticate that Yubikey Neo against your
servers with a long press (slot 2), while the short press (slot 1) remains available for when you
want to authenticate against the public Yubico cloud for some other service.

If you have a Yubikey Standard or Nano, these keys have only one slot. You will have to overwrite
the only existing identity on it. If this key is already tied into authenticating another service against
the public Yubico cloud, the key will stop working there. You have been warned.

To recap, the identity can not be fully extracted from a key entirely (including the secrets), but it
could be overwritten with a new identity. It is possible to password-protect the key so ID
overwrites in the future can only be done by you, but it's best to not enable that feature before
you’re very familiar with the hardware. By default, the key is not password-protected (at least my
Neo wasn’t).

This chapter and the following are largely based on this HOWTO:

http://forum.yubico.com/viewtopic.php?f=31&t=1424

For the next steps you'll need gpg. If it's not installed, then:
apt-get install gnupg

You'll also need the ykksm-gen-keys and ykksm-import tools. These executables should be
contained in the yubikey-ksm package installed a few pages before.

On Ubuntu, everything is contained in the APT repository. You don't need to download and
compile anything. But if you need to perform these steps on a system where ykksm-gen-keys is
not available in a package (like on OS X currently), then get the software tarballs at this link (not
necessary on Ubuntu):

http://www.google.com/url?q=http%3A%2F%2Fforum.yubico.com%2Fviewtopic.php%3Ff%3D31%26t%3D1424&sa=D&sntz=1&usg=AFQjCNE9hJ-HLGbevEFdjRfEdO9khamjpQ
http://www.google.com/url?q=http%3A%2F%2Fforum.yubico.com%2Fviewtopic.php%3Ff%3D31%26t%3D1424&sa=D&sntz=1&usg=AFQjCNE9hJ-HLGbevEFdjRfEdO9khamjpQ

https://developers.yubico.com/yubikey-ksm/

The tools are just Perl scripts, so they should work almost anywhere.

The next steps will perform a lot of crypto. Make sure your system has plenty of entropy. If
various commands seem to get stuck, then move the mouse around, tap the CTRL key,
generate some hard drive activity, or some network traffic - all these replenish entropy and your
tools should get unstuck eventually. If you’re on a headless server, this can be pretty difficult to
accomplish - but sometimes a ping flood will crank the entropy up.

First generate the GPG import key:

$ gpg --gen-key

gpg (GnuPG) 1.4.18; Copyright (C) 2014 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory " /Users/someuser/.gnupg' created
gpg: new configuration file "~ /Users/someuser/.gnupg/gpg.conf' created
gpg: WARNING: options in "~ /Users/someuser/.gnupg/gpg.conf' are not
yet active during this run
gpg: keyring " /Users/someuser/.gnupg/secring.gpg' created
gpg: keyring " /Users/someuser/.gnupg/pubring.gpg' created
Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 2
DSA keys may be between 1024 and 3072 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is wvalid for? (0)
Key does not expire at all
Is this correct? (y/N) vy

https://www.google.com/url?q=https%3A%2F%2Fdevelopers.yubico.com%2Fyubikey-ksm%2F&sa=D&sntz=1&usg=AFQjCNHcuF0Kv27smA770JFTTLIFyl0Waw
https://www.google.com/url?q=https%3A%2F%2Fdevelopers.yubico.com%2Fyubikey-ksm%2F&sa=D&sntz=1&usg=AFQjCNHcuF0Kv27smA770JFTTLIFyl0Waw

You need a user ID to identify your key; the software constructs the

user ID

from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: yubikey-ksm import key

Email address:

Comment:

You selected this USER-ID:
"yubikey-ksm import key"

Change (N)ame, (C)omment, (E)mail or (O)kay/ (Q)uit? o
You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to
perform

some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

gpg: WARNING: some OpenPGP programs can't handle a DSA key with this
digest size

e o Attt e o U L O O o o R
e o o A L APUPIR S
T o o +++++

We need to generate a lot of random bytes. It is a good idea to
perform

some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

B il e e TR e e B N e A s S L e
e e T T T T e e e i o
B i ot o o 1 D e

...

gpg: /Users/someuser/.gnupg/trustdb.gpg: trustdb created
gpg: key Cl4E5A21 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb

gpg: 3 marginal (s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 wvalid: 1 signed: 0O trust: 0-, O0g, On, Om, 0f, 1lu
pub 2048D/C14E5A21 2014-09-05

Key fingerprint =
):9:9,9,9,9,9.9.9:9:9:0:0:0:0:0.0.0.0.0.0.9.9.9.9.9.9.9:9.9.9,9,9.9,9.9.9.9.9:0:0:0:0:0:0.0.0.0.0.0.0.¢
uid yubikey-ksm import key
sub 2048g/6F539F90 2014-09-05

Use a strong passphrase for this key. It's best to keep the whole contents of the .gnupg directory
in some safe place. For the real name, use something like "yubikey-ksm import key" or whatever
makes sense to you.

Write down the public fingerprint of the key (the line beginning with "pub" above), or you could
always get it later with gpg --list-keys. The results of the command you’ve run are in .gnupg in
your home directory.

Now you'll generate the new key identity. Ideally, this should be done on a secure system, with all
data piped between commands directly via shell pipes, so the identity is never stored on long
term storage. But here we will store it temporarily in text files, for clarity.

For the serial number of the key, pick some random number. The Unix time in seconds might be
a good option, since perfect randomness is not critical at this step.

ks="date +%s°
ykksm-gen-keys $ks > key${ks}.txt

This is the result:

$ cat keyl409952015.txt

ykksm 1

#
serialnr,identity, internaluid, aeskey, lockpw, created, accessed[,progfla
gs]

1409952015, cccecgfecldkev, 9f44acc75b0f,5706256dd94fe0be73b32cecefdfaedl
,769819cbcab0,2014-09-05T14:20:48,

the end

The long line with lots of numbers has several fields:

- the first field (14099...) is the serial number you used when you generated the key

- the second field (cccc...) is the public ID of the key - this is an important field that you will use
later

- the third field (9f44...) is the private ID

- the fourth field (5706...), which is the longest, is the secret key

Now ASCII-armor that file using the GPG key generated above. For the -r parameter use the
fingerprint of the GPG key (see above).

$ gpg -a --encrypt -r Cl4E5A21 -s keyl1409952015.txt
You need a passphrase to unlock the secret key for
user: "yubikey-ksm import key"

2048-bit DSA key, ID Cl4EL5A21, created 2014-09-05

This is what you get:

$ 1s -1h key1409952015.txt*

-rw-r--r—-- 1 florinandrei staff 199B Sep 5 14:20
keyl1409952015.txt
-rw-r--r—-- 1 florinandrei staff 1.3K Sep 5 14:25

key1409952015.txt.asc

Import this identity into the KSM (Key Store Manager) database. The database name, username
and password you need at this step are in /etc/yubico/ksm/config-db.cfg. You will also be
prompted for the passphrase for the GPG import key:

vkksm-import --verbose --database
'DBI:mysqgl :dbname=ykksm;host=127.0.0.1" --db-user ykksmreader
--db-passwd <ksm-db-pass> < ./keyl1409952015.txt.asc

[...snip...]

You need a passphrase to unlock the secret key for

user: "yubikey-ksm import key"

2048-bit ELG-E key, ID 6F539F90, created 2014-09-05 (main key ID
Cl14E5A21)

line:
1409952015, ccccgfcldkev, 9f44acc75b0f,5706256dd94felbe73b32cecefdfaedl
, 769819cbcab0,2014-09-05T14:20:48,

serialnr 1409952015 publicname ccccgfcldkcv internalname
9fd44acc75b0f aeskey 5706256dd94felbe73b32cecefdfaed0 lockcode
769819cbcab0 created 2014-09-05T14:20:48 accessed eol

Again, you can see here in the output the public ID, the private ID, and the secret key.

Copy the public ID (in this case cccc...) Create a file named /etc/yubico/yubikeyid and add the
public key ID to the username that will use this key. It's okay for the same username to have
more than one key ID, although in practice most users will probably have just one key.

Basically, this file connects the key ID to the identity of the user. Each username is on a
separate line.

cat /etc/yubico/yubikeyid
Jjsmith:ccccecbhkljr:cccecgfcldkev

Check the database, the key should be stored there:
SELECT * FROM ykksm.yubikeys;

Compare the database with the data about the key stored in the text file, it should be the same.

Upload the key ID into a Yubikey device

To use the key ID you've created and stored, you have to upload it into an actual Yubikey device.
First, install the YubiKey Cross Platform Personalization Tool, which has binaries and packages
for most platforms:

http://www.yubico.com/products/services-software/personalization-tools/use/

Plug the Yubikey into your computer. Then launch the personalization tool.

8 00 YubiKey Personalization Tool

Yubico OTP OATH-HOTP Static Password Challenge-Response Settings Tools About Exit

YubiKey is inserted

The Swiss Army Knife for the YubiKey

Personalize your YubiKey in: Programming status:
Slet 1 and 2 configured

= Yubico OTP Mode " "
Firmware Version:

=9 OATH-HOTP Mode 3.2.0
Serial Number
=y Static Password Mode
Dec: ﬂ
=) Challenge-Response Mode Hex: - 0
= Update Settings Mudhex;- ﬂ
Features Supported
If you have any questions or suggestions, please send an email to support@yubico.com Yubico OTP P
2 Configurations o
Application Version: 3.1.14 OATH-HOTP)
Library Version: 1.15.0 Static Password L4
Build Timestamp: Jan 10 2014 15:41:47 Scan Code Mode v
Challenge-Response «
Copyright & 2011-2014 Yubice. All Rights Reserved. Updatable v
Ndef +

yubico

to the cloud

Click the Yubico OTP Mode link to program the Yubikey. Then select Advanced. You will then
see this screen:

http://www.google.com/url?q=http%3A%2F%2Fwww.yubico.com%2Fproducts%2Fservices-software%2Fpersonalization-tools%2Fuse%2F&sa=D&sntz=1&usg=AFQjCNFNI7v1Fdp46klGzGkRJctRc4C35A
http://www.google.com/url?q=http%3A%2F%2Fwww.yubico.com%2Fproducts%2Fservices-software%2Fpersonalization-tools%2Fuse%2F&sa=D&sntz=1&usg=AFQjCNFNI7v1Fdp46klGzGkRJctRc4C35A

8 0o YubiKey Personalization Tool

Yubico OTP OATH-HOTP Static Password Challenge-Response About

YubiKey is inserted

Configuration Slot

Select the configuration slot to be programmed

|__:__| Cenfiguration Slot 1 @ Cenfiguration Slot 2 Q ////
|_| Program Multiple YubiKeys Configuration Protection (6 bytes Hex) @
Automatically program YubiKeys when inserted | Yubikey(s) unprotected - Keep it that way]
i @ Current Access Code Programming status:
Parameter Generaticn Scheme u)
Use Serial Mumber Slot 1 and 2 configured
Identity from serial; Randomize Secrets New Access Code Firmware Version:
Use Serial Number 3.2.0
Yubico OTP Parameters Serial Number
™ public 1dentity (1-16 bytes Mochex) (D [Generate | @ | Dec: - i}
Public Identity Length =3 |:‘ (6 bytes is default length as required by Yubico OTP validation server) Hex: - D
[V Private Identity (6 bytes Hex) ﬁ [Generate | @ Modhex:- i}

Secret Key (16 bytes Hex) _ | Generate | @ Features Supported

Yubico OTP L

Actions 2 Configurations 4
Press Write Configuration button to program your YubiKey's selected configuration slot OATH-HOTP)

| Write Configuration | Stop | Reset | | Back | Static Password i
Scan Code Mode o+

n, It Challenge-Response +
Public Identity (Modhex) = Status = Timestamp Updatable v
MNdef L4

Select Configuration Slot 2 if you use a Neo. Other keys may only have one slot (see discussion
in previous chapter).

Now refer to the file key1409952015.txt generated above. The fields in that file need to be copied

to the GUI: public ID (identity), private ID (internaluid), and secret key (aeskey), highlighted in bold
characters below:

$ cat key1409952015.txt

ykksm 1

#

serialnr, identity, internaluid, aeskey, lockpw,created, accessed[,progfla
gs]

1409952015, ccccgfecldkev, 9f44acc75b0£f, 5706256dd94fe0be73b32cecef4fae4dl
, 769819cbcab0,2014-09-05T14:20:48,

the end

The section titled Yubico OTP Parameters in the screenshot above needs to receive these fields
(the three big blacked out parts in the middle of the screenshot). Copy each field and paste it into
the corresponding place in the GUI. Then click Write Configuration.

You could write the output to a log file. If all goes well, the GUI will print a status message along
the lines of "YubiKey has been successfully configured".

Close the GUI. Start a text editor. Do a long-press on the Yubikey sensor (if you've programmed
slot 2 on a Neo), or a short press or tap (if you've programmed slot 1 on a Neo, or if you've
programmed one of the other, simpler keys). Watch the text editor.

A long string of text will be printed into the editor. The first 12 characters will be the public ID of
the identity you've just programmed into your Yubikey (cccc....). The rest is the OTP. Make sure
the public ID you get from the key actually matches what you think you've uploaded into it.

Configure the OpenVPN server to use the local authentication
database for OTP

Now it's time to switch your authentication from using the public Yubico OTP cloud to your own
local authenticator.

http://www.andybotting.com/using-the-yubikey-for-two-factor-authentication-on-linux

All you need to do is edit /etc/pam.d/openvpn and point it at the local authenticator. You could
keep the old entry pointing it at the public cloud, if you like, just make sure to comment it out.

In the default installation of the Yubikey VAL server, the only client ID in the database is 1. So
you'll have to adjust the id= parameter for the local authentication. In the end,
/etc/pam.d/openvpn should look like this:

public OTP authentication

#auth required pam yubico.so authfile=/etc/yubico/yubikeyid id=16
debug

local OTP authentication

auth required pam yubico.so authfile=/etc/yubico/yubikeyid id=1
url=http://127.0.0.1/wsapi/2.0/verify?id=%d&otp=%s debug

#

Radius PIN

auth required pam radius auth.so debug

#

Avoid having to create local Unix accounts

account required pam permit.so debug

http://127.0.0.1/ in the file above indicates you're using localhost for OTP authentication. In theory
you could run the VAL server somewhere else, and then you'd have to change that URL, but
that's another story for another day.

Now go ahead and test it. "tail -f /var/log/syslog" on the server. No need to restart anything.

Fire up the VPN client and wait for the user/pass prompt. Enter the username, then click the
password field.

In the password field, enter the Radius PIN, but do not hit Enter yet - instead, on the Yubikey do a
long-press (if it's a Neo with slot 2 programmed), or a short press (if it's a Neo with slot 1
programmed, or one of the other keys with only one slot). You will see the Yubikey filling up the
password field with characters.

http://www.google.com/url?q=http%3A%2F%2Fwww.andybotting.com%2Fusing-the-yubikey-for-two-factor-authentication-on-linux&sa=D&sntz=1&usg=AFQjCNHYPMBNd8NqWnwu64fIceoqvwxNlw
http://www.google.com/url?q=http%3A%2F%2Fwww.andybotting.com%2Fusing-the-yubikey-for-two-factor-authentication-on-linux&sa=D&sntz=1&usg=AFQjCNHYPMBNd8NqWnwu64fIceoqvwxNlw
http://www.google.com/url?q=http%3A%2F%2F127.0.0.1%2F&sa=D&sntz=1&usg=AFQjCNEeStd6FRRcxbqBS54jDrwlXgO2Qg

If all goes well, the VPN client will connect; on the server, in syslog you'll see a ton of messages
from openvpn, radius and ykval indicating success.

In the database, after each successful authentication, do this query:
SELECT * FROM ykval.yubikeys;

The following fields will change each time you authenticate:

- modified

- yk_use

- yk_low

- yk_high

If you don't need redundant VPN servers, you could stop here.

Create a pair of redundant VPN servers

Most of the authentication information is contained in the MySQL database. There are very few
things that are outside it, that need to be maintained as you add / remove users. The glaring
exception is the /etc/yubico/yubikeyid file that maps Yubikey IDs to usernames - that one will
have to be copied somehow between your multiple VPN servers (rsync?).

But for all the rest, DB replication will take care of it.

Generic configuration

First, make sure both servers have the same software installed. You could simply go on the
secondary server and run all the apt-get commands that you've run on the primary.

apt-get update
apt-get dist-upgrade
reboot

add-apt-repository ppa:yubico/stable

apt—-get update

apt-get install openvpn easy-rsa yubikey-ksm yubikey-val
libpam-yubico freeradius freeradius-mysgl apg libpam-radius-auth
gnupg

Use the same passwords above that you've used for the primary server. The files on the primary
with the passwords are:

- /etc/yubico/ksm/config-db.cfg
- /etc/yubico/ksm/config-db.php
- /etclyubico/val/config-db.php

Perform various configuration tasks:

update-rc.d ykval-queue disable

service ykval-queue stop

useradd -d /var/run/openvpn -m -r -s /usr/sbin/nologin openvpn
echo "net.ipv4.ip forward=1" > /etc/sysctl.d/99-openvpn.conf
service procps start

In the middle of /etc/rc.local (not at the end) insert this:

(sleep 20; service freeradius stop; sleep 1; service freeradius
start) &

To be honest, you could run the above sequence even when building the primary - just get all the
software installed in one shot.

Now make sure the primary and secondary have the same configuration. Everything in the
following locations must be identical (provided that the DB passwords for YK are made
identical):

- /etc/yubico

- /etc/openvpn

- letc/freeradius

- letc/pam.d/openvpn

- letc/pam_radius_auth.conf

If you haven't chosen identical DB passwords (between primary and secondary) for the YK
software, and you change your mind later, this is how to change them in the DB:

SET PASSWORD FOR ykksmreader@localhost = PASSWORD ('ksm-password'):;
SET PASSWORD FOR ykval verifier@localhost = PASSWORD ('val-password');

The following steps assume you have two VPN servers: primary and secondary.
On the secondary, create the Radius DB, with schema and user:

CREATE DATABASE radius;

GRANT ALL ON radius.* TO radius@localhost IDENTIFIED BY
"the-radius-db-password";

mysql -uroot -p radius < /etc/freeradius/sqgl/mysql/schema.sqgl

If passwords are identical between the two servers, then on the primary you could just tar up all
files that are supposed to be identical...

tar -czvf all.tar.gz /etc/yubico /etc/openvpn /etc/freeradius
/etc/pam.d/openvpn /etc/pam radius auth.conf

...and untar the whole thing on the secondary in / then reboot.
cd /

tar -zxvf /path/to/all.tar.gz
reboot

Check /var/log/syslog for any errors.

Setup MySQL master/master replication

Master/master replication means both database servers are masters, and both are slaves. In
other words, you could write data to either server, and read from either server; data is replicated
between servers in either direction.

You should give some thought to the connection between servers. If both servers are on the
same LAN, you could just replicate directly from one IP to another.

If they are in separate locations, especially if separated by insecure networks, you must create a
dedicated point-to-point VPN tunnel between the two systems, and setup replication over the
tunnel. This is outside the scope of this document, but should be pretty trivial to implement, if
you’re familiar with OpenVPN.

In any case, on each server you must pick an IP address that will be used for replication. Often,
that’s the only IP address the server has; sometimes a separate interface (physical or virtual) is
dedicated for replication on each machine. In the example below, the IP addresses we use are
the replication IPs on the two servers - the procedure is the same no matter whether the IPs are
dedicated or not.

On the primary server, edit /etc/mysql/conf.d/replication.cnf with the following content:

(mysqgld]

server-id =1

log bin = /var/log/mysgl/mysqgl-bin.log
binlog do db = radius

binlog do db = ykksm

binlog do db = ykval

bind-address = *

And restart the mysql service (service mysql restart).
Create the replication user and grant it privileges:

CREATE USER replicator@'%' IDENTIFIED BY '<rep-pass>';
GRANT REPLICATION SLAVE ON *.* TO replicator@'%';

Dump all replicated databases:

mysgldump -p --databases radius ykksm ykval > pri.sqgl
Verify the master status:

mysqgl> SHOW MASTER STATUS;

o fommm - fm fom e
-+

| File | Position | Binlog Do DB | Binlog Ignore DB
|

o fommm - fm fom e
-+

| mysgl-bin.000001 | 344 | radius,ykksm,ykval |

|

o fommm - fm fom e
-+

1 row in set (0.00 sec)
On the secondary execute the following:
Import the databases from the dump file:
cat pri.sql | mysgl -p

Edit /etc/mysql/conf.d/replication.cnf with:

[mysgld]

server-id =2

log bin = /var/log/mysgl/mysgl-bin.log
binlog do db = radius

binlog do db = ykksm

binlog do db = ykval

bind-address = *

Restart mysql (service mysql restart).
Create the replication user and grant it privileges:

CREATE USER replicator@'$s' IDENTIFIED BY '<repl-pass>';
GRANT REPLICATION SLAVE ON *.* TO replicator@'s';

Stop the slave:

SLAVE STOP;

Give the secondary all the info it needs about the master: the IP of the primary (that is used for
replication), user and pass, the log file, and the position in the log. All this information was
gathered above when running SHOW MASTER STATUS on the primary. The IP address is
shown by ifconfig.

CHANGE MASTER TO MASTER_HOST = '172.28.128.215", MASTER_USER =
'replicator’, MASTER_PASSWORD = '<repl-pass>"', MASTER_LOG_FILE =
'mysgql-bin.000001", MASTER_LOG_POS = 344, MASTER_CONNECT_RETRY = 10;
And start the slave:

SLAVE START;

Finally, show the master status:

mysqgql> SHOW MASTER STATUS;

o fommm - fm fom e
-+

| File | Position | Binlog Do DB | Binlog Ignore DB
|

o fommm - fm e fom e
-+

| mysgl-bin.000001 | 378 | radius, ykksm, ykval |

|

o fommm - fm e fom e
-+

1 row in set (0.00 sec)

On the primary now execute these steps:

Stop the slave:

SLAVE STOP;

Again on the primary, tell it to use the secondary as a master, and give it the IP of the secondary,
the user/pass, and the log file name and position. This information was provided above when you
did "show master status" on the secondary. The IP address is the secondary's replication
interface.

CHANGE MASTER TO MASTER HOST = '172.28.128.216', MASTER USER =

'replicator', MASTER PASSWORD = '<repl-pass>', MASTER LOG_FILE
'mysql-bin.000001', MASTER LOG_POS = 344, MASTER CONNECT RETRY

10;

Start the slave on the primary:

SLAVE START;

Now master/master replication should be active. Test it:
On both servers, use the same database:

USE radius;

On one server, create a dummy table:

CREATE TABLE dummy (id° wvarchar(10));

On the other server, try to see that table:

mysgl> DESCRIBE dummy;

fo————— fom e it +-———- o= fo————— +

| Field | Type | Null | Key | Default | Extra |

fo————— fom e it +-———- o= fo————— +

| id | varchar (10) | YES | | NULL | |

fo————— fom e it +-———- o= fo————— +
)

Success!

On the server where you've run DESCRIBE, try to drop that table:

DROP TABLE dummy;

And back on the server where you've create it, try to see if that table still exists:

mysgl> DESCRIBE dummy;
ERROR 1146 (42502): Table 'radius.dummy' doesn't exist

Perfect! Test the other replicated databases too, to make sure they are being replicated. At this
point you have full replication between servers.

Connect VPN to the primary server. After it's connected, run this on both servers:

SELECT * FROM vykval.yubikeys;

The table should be identical on both machines. It is updated every time you connect to VPN and
use your OTP device.

Disconnect VPN. Edit the VPN client config to connect to the secondary server. Run that

SELECT again on both servers. It should change again, and it should be identical on both
servers.

VPN tunnel for MySQL replication

If the VPN servers are in different locations, and a secure connection does not exist already
between the two, you must protect the MySQL replication channel with its own VPN tunnel. This
should be easy, since we already have all the software we need.

Moreover, OpenVPN does not make a clear distinction between client and server. Sure, the
server will listen for incoming connections, and the client will initiate, but beyond that they are
almost the same. The same openvpn executable is used for both.

Finally, on most distributions (Ubuntu included), the openvpn service will look in the /etc/openvpn
directory for *.conf files, and will happily create a new openvpn instance for each one of them.
Just make sure to provision each *.conf file with the appropriate certificates and settings, and
use different ports and/or different IPs for binding the servers to - so there’s no conflict between
the multiple openvpn server processes.

You must setup separate openvpn processes just for replication, you cannot reuse the existing
openvpn server processes, because the replication tunnel is different from all other tunnels, and
different rules apply for firewall, routing, etc. The primary OpenVPN server will be a "server" for
this tunnel, and the secondary will be a "client".

Create dedicated IP addresses for replication

Each MySQL instance needs to know the hostname or IP address of the other instance, for
replication. You cannot replicate between the public IPs of those instances. You could use the
private IP address for each instance, but in a dynamic environment (e.g. cloud) this may not
work. Here's a way to make it work independently of the environment.

On each server, create an IP alias for the loopback interface, named l0:0, and give it a unique
address (not in an IP range you're using somewhere else) and a netmask of 255.255.255.255.

For example:

On both systems, edit /etc/network/interfaces and make sure this line exists at the end and is
not commented out (create it if it's not there):

source /etc/network/interfaces.d/*.cfg
On the primary, create /etc/network/interfaces.d/000-100.cfg with the following content:

auto lo:0
iface lo:0 inet static

name lo Alias
address 10.97.83.1
netmask 255.255.255.255

On the secondary, create /etc/network/interfaces.d/000-10.cfg with the following content:
auto lo:0

iface 1lo:0 inet static

name lo Alias

address 10.97.83.2

netmask 255.255.255.255

Reboot both systems. In some cases reboot might be a bit slow (couple minutes) after adding
this IP alias to loopback - | don't know why. But the instance still works once it has rebooted.

Now if you do 'ifconfig' you should see this on the primary:
lo:0 Link encap:Local Loopback
inet addr:10.97.83.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:65536 Metric:1
And on the secondary:
lo:0 Link encap:Local Loopback
inet addr:10.97.83.2 Mask:255.255.255.255

UP LOOPBACK RUNNING MTU:65536 Metric:1

These interfaces keep their IP addresses no matter what happens to the public or private IPs of
the instances. They are routable through VPN, and therefore could be used for replication.

Create VPN certificates for the replication tunnel

Go to your CA and create the server certificates for the primary server:
cd <secure-location>/easy-rsa
vars
./build-key-server replication-srv001
accept the defaults, sign and commit

Create the client certificates for the secondary server:

./build-key replication-cln001

accept the defaults, sign and commit
Check the status:

1s -1 keys/replication-*

-rw-r--r—-—- 1 root root 5550 Sep 10 12:58 keys/replication-cln00l.crt
-rw-r—--r-- 1 root root 1098 Sep 10 12:58 keys/replication-cln00l.csr
—rW-——————— 1 root root 1704 Sep 10 12:58 keys/replication-cln001.key
-rw-r—--r-- 1 root root 5671 Sep 10 12:56 keys/replication-srv00l.crt
-rw-r--r—— 1 root root 1098 Sep 10 12:56 keys/replication-srv00l.csr
—rTW——————~ 1 root root 1704 Sep 10 12:56 keys/replication-srv001l.key

Configure the primary server for the replication tunnel
Copy the server certificates to /etc/openvpn:

cp keys/replication-srv00l.crt keys/replication-srv001l.key
/etc/openvpn/

Go into /etc/openvpn and generate a TLS auth key just for this tunnel:

cd /etc/openvpn
openvpn —--genkey —--secret ta-repl.key

Create replication-srv001.conf - the configuration file for the replication VPN server:

SRR R E R AR R R &S AL

port 12345

proto udp

float

persist-key

dev tun0

ca ca.crt

cert replication-srv00l.crt # edit to match

key replication-srv00l.key # edit to match

dh dh2048.pem

server 10.214.208.0 255.255.255.0 # edit to match

route 10.97.83.2 255.255.255.255 # remote replication IP
push "route 10.97.83.1 255.255.255.255" # local replication IP
ifconfig-pool-persist ipp-repl.txt

client-config-dir ccd

client-to-client

keepalive 10 120

tls-auth ta-repl.key O
comp-1zo

user openvpn

group openvpn

persist-key

persist-tun

status openvpn-repl-status.log
verb 3

FHEH A H AR H AR H AR AR S

Use a port different from the main VPN service, to prevent conflicts.

Create /etc/openvpn/ccd. Within that directory, create a file called
/etc/openvpn/ccd/replication-cln001 (the name matches the common name for the secondary
server connecting via this tunnel) with the following content:

iroute 10.97.83.2 255.255.255.255

Stop all openvpn instances:

service openvpn stop

And now start all openvpn instances:

service openvpn start

Or you could issue commands to each openvpn instance separately:

service <stop|start> [instance-name]

The name of the instance is the name of the .conf file in /etc/openvpn.

Configure the secondary server for the replication tunnel

In a different location, create a .zip bundle with all files needed for the secondary:

cd

mkdir second

cd second/

cp <secure-location>/easy-rsa/keys/replication-cln00l.crt
cp <secure-location>/easy-rsa/keys/replication-cln001l.key

cp /etc/openvpn/ca.crt

cp /etc/openvpn/ta-repl.key .
cd ..

zip -r second.zip second/

Move the .zip bundle to the secondary and extract all files into /etc/openvpn.
Create the configuration file replication-cIn001.conf with the content:

FHEH A H AR H AR H AR H AR A

client

dev tun0

persist-tun

proto udp

remote 172.28.128.215 12345

resolv-retry infinite

nobind

persist-key

persist-tun

ca ca.crt

cert replication-cln00l.crt # edit to match
key replication-cln00l.key # edit to match
ns-cert-type server

tls-auth ta-repl.key 1

comp-1zo

verb 3

igaddsassaas s i daaanadidi

The address in the 'remote' statement must match the address (or hostname) of the primary
server, and the port must match the port you've used on the primary for the replication tunnel.

Restart openvpn on the secondary:

service openvpn restart

On the secondary, ping the replication IP of the primary:
ping 10.97.83.1

On the primary, ping the replication IP of the secondary:

ping 10.97.83.2

Configure MySQL to replicate through the tunnel

Assuming you have MySQL replication already working, these are the steps to convert it to
replicating via the tunnel. If it's not working already, use the steps indicated in a previous chapter
(Setup MySQL master/master replication) and simply use the replication IPs when you run
CHANGE MASTER TO on both servers.

On both systems, stop the slave:

SLAVE STOP;

On the primary, query the master status:

mysqgl> SHOW MASTER STATUS;

- e e e —
-+

| File | Position | Binlog Do DB | Binlog Ignore DB
|

- e e e —
-+

| mysgl-bin.000009 | 107 | radius,ykksm,ykval |

|

- e e e —
-+

1 row in set (0.00 sec)
On the secondary, query the master status:

mysgl> SHOW MASTER STATUS;

o fommm - fm e fom e
-+

| File | Position | Binlog Do DB | Binlog Ignore DB
|

o fommm - fm e fom e
-+

| mysgl-bin.000009 | 107 | radius, ykksm,ykval |

|

o fommm - fm e fom e
-+

1 row in set (0.00 sec)

On the primary, change the master to point at the secondary's replication IP, and use the log file
name and log position shown by SHOW MASTER STATUS from the secondary:

mysqgl> CHANGE MASTER TO MASTER HOST = '10.97.83.2", MASTER USER =
'replicator', MASTER PASSWORD = '<repl-pass>"', MASTER LOG FILE
'mysgl-bin.000009', MASTER LOG_POS = 107, MASTER CONNECT RETRY
Query OK, 0 rows affected (0.01 sec)

10;
On the secondary, change the master to point at the primary's replication IP, and use the log
file name and log position shown by SHOW MASTER STATUS from the primary:

mysgl> CHANGE MASTER TO MASTER HOST = '10.97.83.1', MASTER USER =
'replicator', MASTER PASSWORD = '<repl-pass>', MASTER LOG FILE =
'mysql-bin.000009', MASTER LOG POS = 107, MASTER CONNECT RETRY = 10;
Query OK, 0 rows affected (0.01 sec)

On both systems start the slave:

SLAVE START;

Now test replication just like in the previous chapter (create table, etc). You could run SHOW
SLAVE STATUS on one system, and correlate it with SHOW MASTER STATUS on the other.

You could reboot both systems and test replication again, to make sure the configurations are
persistent.

Security

It's a vast topic, and all the usual recommendations apply: keep the systems up to date, don’t run
unnecessary services, limit access to these systems, etc.

| will address in detail network security.

The OpenVPN servers must only offer one service to the Internet: the openvpn port - by default,
udp/1194. Access to all other services must be restricted. You may allow ICMP traffic inbound if
you feel that's appropriate, for testing with ping and so on. SSH must only be accessible from
locations authorized to ssh into the systems.

Begin by reading this introduction to iptables for Ubuntu:

https://help.ubuntu.com/community/IptablesHowTo

It is recommended to disable all iptables control mechanisms described in that document (if any
are active), and only rely on iptables-persistent.

Install iptables-persistent:

apt-get install iptables-persistent
Save the current firewall configuration:
service iptables-persistent save
Check the configuration:

cat /etc/iptables/rules.v4

Generated by iptables-save v1.4.21 on Wed Sep 10 12:17:07 2014
*filter

:INPUT ACCEPT [533:30248]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [312:26216]

COMMIT

Completed on Wed Sep 10 12:17:07 2014

The numbers within square brakets are irrelevant (just traffic counters). What matters is that
there are no rules, and the policies are permissive. If not, flush the firewall and save again:

service iptables-persistent flush

https://www.google.com/url?q=https%3A%2F%2Fhelp.ubuntu.com%2Fcommunity%2FIptablesHowTo&sa=D&sntz=1&usg=AFQjCNGy2Q8BFg1zPVxWaHnLYCf37QO84g

service iptables-persistent save
Check /etc/iptables/rules.v4 again, it should now look as shown above.
Create a script called fw.sh with the following content:

FHAFHHEHHH AR H AR 44
#!/bin/bash

service iptables-persistent flush
local traffic is always accepted

iptables -t filter -A INPUT -i lo -j ACCEPT
stateful filtering for already established connections

iptables -t filter -A INPUT -m state --state RELATED,ESTABLISHED -]

ACCEPT

generic VPN

iptables -t filter -A INPUT -p udp -m state --state NEW
--dport 1194 -j ACCEPT

replication VPN

iptables -t filter -A INPUT -p udp -m state --state NEW
172.28.128.216/32 --dport 12345 -3 ACCEPT

MySQL master/master

iptables -t filter -A INPUT -p tcp -m state --state NEW
tun0 -d 10.97.83.1/32 —--dport 3306 -j ACCEPT

ssh

iptables -t filter -A INPUT -p tcp -m state --state NEW
-—-dport 22 -j ACCEPT

icmp

iptables -t filter -A INPUT -p icmp -m icmp --icmp-type
log - remove it after testing is done

iptables -t filter -A INPUT -j LOG

and drop

iptables -t filter -A INPUT -j DROP

NAT

iptables -t nat -A POSTROUTING -o eth0O -j MASQUERADE
HHHHH AR AR AR AR AR AR AR AR AR

What the script does:

- allows all local traffic over 127.0.0.1
- allows already established connections to come in (iptables is stateful)

-m udp

-m udp -s

-m tcp -1

-m tcp

any -3 ACCEPT

- allows the world to access the main VPN port

- allows the other server to access the replication VPN tunnel (uses the public IP of the other
server as a source)

- allows MySQL connections coming in via the replication VPN tunnel, with the destination being
the local replication IP

- allows ssh connections (you should add here allowed source addresses via the -s option to
further restrict access - wide-open ssh access is not healthy)

- allows incoming ICMP

- logs everything else, then drops it

At the end, if you need to NAT the VPN clients, use the final line - otherwise remove it.

Create a version of this script on each server, adjust the IP addresses, and run it. Test
everything - VPN, replication, NAT, ssh access, etc. If everything works okay, then run on both
servers:

service iptables-persistent save

and then delete the fw.sh script (it was just a temporary tool). Your firewall configuration will be
stored in /etc/iptables.

When everything is pretty stable in production, feel free to edit /etc/iptables/rules.v4, delete the
line with -j LOG, then restart the firewall:

service iptables-persistent restart

You only need logging for troubleshooting, so you could add that line back in when something
seems wrong on the network side.

